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10 Continuous Random Variables

10.1 From Discrete to Continuous Random Variables

10.1. In many practical applications of probability, physical sit-
uations are better described by random variables that can take on
a continuum of possible values rather than a discrete number of
values.

For the random variables to be discussed in this section,

• any individual value has probability zero:

P [X = x] = 0 for all x (20)

and that

• the supports are always uncountable.

These random variables are called continuous random vari-
ables.

10.2. Implications:

(a) We can see from (20) that the pmf is going to be useless for
this type of random variable. It turns out that the cdf FX
is still useful and we shall introduce another useful function
called probability density function (pdf) to replace the role of
pmf. However, integral calculus37 is required to formulate this
continuous analog of a pmf.

37This is always a difficult concept for the beginning student.
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(b) Because talking about P [X = x] for continuous RV is useless
(always 0), we instead talk about the probability that the RV
is in some interval, e.g. P [a < X < b].

10.3. In some cases, the random variable X is actually discrete
but, because the range of possible values is so large, it might be
more convenient to analyze X as a continuous random variable.

Example 10.4. Suppose that current measurements are read from
a digital instrument that displays the current to the nearest one-
hundredth of a mA. Because the possible measurements are lim-
ited, the random variable is discrete. However, it might be a more
convenient, simple approximation to assume that the current mea-
surements are values of a continuous random variable.

Example 10.5. If you can measure the heights of people with
infinite precision, the height of a randomly chosen person is a con-
tinuous random variable. In reality, heights cannot be measured
with infinite precision, but the mathematical analysis of the dis-
tribution of heights of people is greatly simplified when using a
mathematical model in which the height of a randomly chosen
person is modeled as a continuous random variable. [21, p 284]

Example 10.6. Continuous random variables are important mod-
els for

(a) voltages in communication receivers

(b) file download times on the Internet

(c) velocity and position of an airliner on radar

(d) lifetime of a battery

(e) decay time of a radioactive particle

(f) time until the occurrence of the next earthquake in a certain
region

(g) noise in communication systems
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Example 10.7. The simplest example of a continuous random
variable is the “random choice” of a number from the interval
(0, 1).

• In MATLAB, this can be generated by the command rand.
In Excel, use rand().

• The generation is “unbiased” in the sense that “any number
in the range (0,1) is as likely to occur as another number.”

• Histogram is flat over (0, 1) in the limit as the number of
samples increases to infinity regardless of the number of bins
as long as the bins have the same size. See Figure 25b.

• Formally, this is called a uniform RV on the interval (0, 1).
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Figure 25: Histogram of the values generated by MATLAB command rand.

Example 10.8. Put a piece of (unit-width and unit-height) paper
outdoor. Mark the location of the (center of) first drop of rain on
it. Record its horizontal position).

Example 10.9. In MATLAB, there are other commands (such
as randn) and ways to generate continuous random variables with
other shapes of histograms.

144



Definition 10.10. We say that X is a continuous random vari-
able38 if we can find a (real-valued) function39 f such that, for any
set B, P [X ∈ B] has the form

P [X ∈ B] =

∫
B

f(x)dx. (21)

Equivalently,

P [some statement(s) about X] =

∫
{all the x values that

satisfy the statement(s)}

f (x) dx.

• In particular,

P [a ≤ X ≤ b] =

∫ b

a

f(x)dx. (22)

In other words, the area under the graph of f(x) between
the points a and b gives the probability P [a ≤ X ≤ b].

• The function f is called the probability density function
(pdf) or simply density.

• When we want to emphasize that the function f is a density
of a particular random variable X, we write fX instead of f .

38To be more rigorous, this is the definition for absolutely continuous random variable. At
this level, we will not distinguish between the continuous random variable and absolutely
continuous random variable. When the distinction between them is considered, a random
variable X is said to be continuous (not necessarily absolutely continuous) when condition (20)
is satisfied. Alternatively, condition (20) is equivalent to requiring the cdf FX to be continuous.
Another fact worth mentioning is that if a random variable is absolutely continuous, then it
is continuous. So, absolute continuity is a stronger condition.

39Strictly speaking, δ-“function” is not a function; so, can’t use δ-function here.
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206 Part 2: Probability

learning
objectives

After reading this
chapter, you should

be able to:

• Understand the nature and the applications of the normal distribution.

• Use the standard normal distribution and z-scores to determine probabilities
associated with the normal distribution.

• Use the normal distribution to approximate the binomial distribution.

• Understand the nature and the applications of the exponential distribution,
including its relationship to the Poisson distribution of Chapter 6.

• Use the computer in determining probabilities associated with the normal and
exponential distributions.

7.1 INTRODUCTION

Chapter 6 dealt with probability distributions for discrete random variables,
which can take on only certain values along an interval, with the possible values
having gaps between them. This chapter presents several continuous probability
distributions; these describe probabilities associated with random variables that
are able to assume any of an infinite number of values along an interval.

Discrete probability distributions can be expressed as histograms, where the
probabilities for the various x values are expressed by the heights of a series of
vertical bars. In contrast, continuous probability distributions are smooth curves,
where probabilities are expressed as areas under the curves. The curve is a func-
tion of x, and f(x) is referred to as a probability density function. Since the con-
tinuous random variable x can be in an infinitely small interval along a range or
continuum, the probability that x will take on any exact value may be regarded as
zero. Therefore, we can speak of probabilities only in terms of the probability that
x will be within a specified interval of values. For a continuous random variable,
the probability distribution will have the following characteristics:

The probability distribution for a continuous random variable:

1. The vertical coordinate is a function of x, described as f(x) and referred to as
the probability density function.

2. The range of possible x values is along the horizontal axis.
3. The probability that x will take on a value between a and b will be the

area under the curve between points a and b, as shown in Figure 7.1. The

a b
x

f(
x)

Area = P[a ≤  x ≤ b]

FIGURE 7.1
For a continuous random
variable, the probability dis-
tribution is described by a
curve called the probability
density function, f(x). The
total area beneath the curve
is 1.0, and the probability
that x will take on some
value between a and b is
the area beneath the curve
between points a and b.

Figure 26: For a continuous random variable, the probability distribution is
described by a curve called the probability density function, f(x). The total
area beneath the curve is 1.0, and the probability that X will take on some
value between a and b is the area beneath the curve between points a and b.

Example 10.11. For the random variable generated by the rand

command in MATLAB40 or the rand() command in Excel,

Definition 10.12. Recall that the support SX of a random vari-
able X is any set S such that P [X ∈ S] = 1. For continuous
random variable, SX is usually set to be {x : fX(x) > 0}.

Example 10.13. For the random variable X in Example 10.11,

Example 10.14. For noise in communication systems,

40The rand command in MATLAB is an approximation for two reasons:

(a) It produces pseudorandom numbers; the numbers seem random but are actually the
output of a deterministic algorithm.

(b) It produces a double precision floating point number, represented in the computer
by 64 bits. Thus MATLAB distinguishes no more than 264 unique double precision
floating point numbers. By comparison, there are uncountably infinite real numbers in
the interval from 0 to 1.
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Example 10.15. Consider a random variable X whose pdf is

fX (x) =

{
2x, 0 < x < 1,
0, otherwise.

(a) Find P [X > 0.5].

(b) Find P [0.2 < X < 0.3].

(c) Find P [0.19 < X < 0.21].

(d) Find P [0.79 < X < 0.81].

Observation: From the pdf expression, we know that fX(0.8) >
fX(0.2).

(a) Does this imply P [X = 0.8] > P [X = 0.2]? No! From (20),
we know that both probabilities are 0.

(b) fX(0.8) > fX(0.2) simply means the RV X is more likely to
be in the small interval around 0.8 than in the small interval
(of the same length) around 0.2. In fact, the ratio of the two
probabilities is approximately the ratio of the pdf values.
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10.16. Intuition/Interpretation:
The use of the word “density” originated with the analogy to

the distribution of matter in space. In physics, any finite volume,
no matter how small, has a positive mass, but there is no mass at
a single point. A similar description applies to continuous random
variables.

Approximately, for a small ∆x,

P [X ∈ [x, x+ ∆x]] =

∫ x+∆x

x

fX(t)dt ≈ fX(x)∆x.

This is why we call fX the density function.

4.1 Densities and probabilities 139

Definition

We say that X is a continuous random variable if P(X ∈ B) has the form

P(X ∈ B) =
∫

B
f (t)dt :=

∫ ∞

−∞
IB(t) f (t)dt (4.1)

for some integrable function f .a Since P(X ∈ IR) = 1, the function f must integrate to one;

i.e.,
∫ ∞
−∞ f (t)dt = 1. Further, since P(X ∈ B) ≥ 0 for all B, it can be shown that f must be

nonnegative.1 A nonnegative function that integrates to one is called a probability density

function (pdf).

Usually, the set B is an interval such as B = [a,b]. In this case,

P(a ≤ X ≤ b) =
∫ b

a
f (t)dt.

See Figure 4.1(a). Computing such probabilities is analogous to determining the mass of a

piece of wire stretching from a to b by integrating its mass density per unit length from a to

b. Since most probability densities we work with are continuous, for a small interval, say

[x,x+∆x], we have

P(x ≤ X ≤ x+∆x) =
∫ x+∆x

x
f (t)dt ≈ f (x)∆x.

See Figure 4.1(b).

(a) (b)

a b x+x x

Figure 4.1. (a) P(a ≤ X ≤ b) =
∫ b

a f (t)dt is the area of the shaded region under the density f (t). (b) P(x ≤ X ≤
x+∆x) =

∫ x+∆x
x f (t)dt is the area of the shaded vertical strip.

Note that for random variables with a density,

P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b)

since the corresponding integrals over an interval are not affected by whether or not the

endpoints are included or excluded.

Some common densities

Here are some examples of continuous random variables. A summary of the more com-

mon ones can be found on the inside of the back cover.

aLater, when more than one random variable is involved, we write fX (x) instead of f (x).

Figure 27: P [x ≤ X ≤ x+ ∆x] is the area of the shaded vertical strip.

In other words, the probability of random variable X taking on
a value in a small interval around point c is approximately equal
to f(c)× d when d is the length of the interval.

• In fact, fX(x) = lim
∆x→0

P [x<X≤x+∆x]
∆x

• The number fX(x) itself is not a probability. In particular,
it does not have to be between 0 and 1.

• fX(c) is a relative measure for the likelihood that random
variable X will take on a value in the immediate neighborhood
of point c.

Stated differently, the pdf fX(x) expresses how densely the
probability mass of random variable X is smeared out in the
neighborhood of point x. Hence, the name of density function.
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10.17. Histogram and pdf [21, p 143 and 145]:
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Figure 28: From histogram to pdf.

(a) A probability histogram is a bar chart that divides the range
of values covered by the samples/measurements into intervals
of the same width, and shows the proportion (relative fre-
quency) of the samples in each interval.

• To make a histogram, break up the range of values covered by the samples
into a number of disjoint adjacent intervals each having the same width,
say width ∆. The height of the bar on each interval [j∆, (j + 1)∆) is
taken such that the area of the bar is equal to the proportion of the
measurements falling in that interval (the proportion of measurements
within the interval is divided by the width of the interval to obtain the
height of the bar).

• The total area under the probability histogram is thus standardized/nor-
malized to one.

(b) If you take sufficiently many independent samples from a con-
tinuous random variable and make the width ∆ of the base
intervals of the probability histogram smaller and smaller, the
graph of the probability histogram will begin to look more and
more like the pdf.

(c) Conclusion: A probability density function can be seen as
a “smoothed-out” normalized version of a (probability) his-
togram
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10.2 Properties of PDF and CDF for Continuous Ran-
dom Variables

10.18. pX(x) = P [X = x] = P [x ≤ X ≤ x] =
∫ x
x fX(t)dt = 0.

Again, it makes no sense to speak of the probability that X will
take on a pre-specified value. This probability is always zero.

10.19. P [X = a] = P [X = b] = 0. Hence,

P [a < X < b] = P [a ≤ X < b] = P [a < X ≤ b] = P [a ≤ X ≤ b]

• The corresponding integrals over an interval are not affected
by whether or not the endpoints are included or excluded. 41

10.20. The pdf fX is determined only almost everywhere42. Given
a pdf f for a continuous random variable X, if we construct a
function g by changing the function f at a countable number of
points43, then g can also serve as a pdf for X.

This is because fX is defined via its integration property. Chang-
ing the value of a function at a few points does not change its area
under the curve (from a to b)

10.21. The cdf of any kind of random variable X is defined as

FX(x) = P [X ≤ x] .

Note that even though there are more than one valid pdfs for any
given random variable, the cdf is unique. There is only one cdf for
each random variable.

41This implies that, when we work with continuous random variables, it is usually not
necessary to be precise about specifying whether or not a range of numbers includes the
endpoints. This is quite different from the situation we encounter with discrete random
variables where it is critical to carefully examine the type of inequality.

42Lebesgue-a.e, to be exact
43More specifically, if g = f Lebesgue-a.e., then g is also a pdf for X.
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(a) pdf, cdf, and probability calculation for continuous RV 

 

(b) Finding Probabilities from CDF 

 

𝑃 𝑎 ൏ 𝑋 ൏ 𝑏 𝐹௑ 𝑥 ≡ 𝑃 𝑋 ൑ 𝑥
𝐹௑ 𝑏 െ 𝐹௑ 𝑎

“     ”

𝑓௑ 𝑥

Definition: 𝐹௑ 𝑥 𝑃 𝑋 ൑ 𝑥
For any RV,

 𝑃 𝑎 ൏ 𝑋 ൑ 𝑏 ൌ 𝐹௑ 𝑏 െ 𝐹௑ 𝑎

 𝑃 𝑋 ൑ 𝑏 ൌ 𝐹௑ 𝑏
𝑃 𝑋 ൏ 𝑏 ൌ 𝐹௑ 𝑏

 𝑃 𝑋 ൐ 𝑎 ൌ 1 െ 𝐹௑ 𝑎
𝑃 𝑋 ൒ 𝑎 ൌ 1 െ 𝐹௑ 𝑎

 𝑃 𝑎 ൏ 𝑋 ൑ 𝑏 ൌ 𝐹௑ 𝑏 െ 𝐹௑ 𝑎
𝑃 𝑎 ൏ 𝑋 ൏ 𝑏 ൌ 𝐹௑ 𝑏 െ 𝐹௑ 𝑎
𝑃 𝑎 ൑ 𝑋 ൏ 𝑏 ൌ 𝐹௑ 𝑏 െ 𝐹௑ 𝑎
𝑃 𝑎 ൑ 𝑋 ൑ 𝑏 ൌ 𝐹௑ 𝑏 െ 𝐹௑ 𝑎

 𝑃 𝑋 ൌ 𝑎 ൌ 0 𝑃 𝑋 ൌ 𝑎 ൌ 𝐹௑ 𝑎 െ 𝐹௑ 𝑎ି

(amount of jump in the CDF @ 𝑎)

 𝑃 𝑋 ൑ 𝑏 ൌ 𝐹௑ 𝑏
𝑃 𝑋 ൏ 𝑏 ൌ 𝐹௑ 𝑏 െ 𝑃 𝑋 ൌ 𝑏

 𝑃 𝑋 ൐ 𝑎 ൌ 1 െ 𝐹௑ 𝑎
𝑃 𝑋 ൒ 𝑎 ൌ 1െ𝐹௑ 𝑎 ൅𝑃 𝑋ൌ𝑎

For continuous RV,

Figure 29: Summary of properties involving CDF
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10.22. Unlike the cdf of a discrete random variable, the cdf of a
continuous random variable has no jump and is continuous every-
where.

10.23. For continuous random variable, given the pdf fX(x), we
can find the cdf of X by

FX(x) = P [X ≤ x] =

∫ x

−∞
fX(t)dt.

Example 10.24. For the random variable generated by the rand

command in MATLAB or the rand() command in Excel,

1

1

1

1

1

1

10.25. Given the cdf FX(x) of a continuous random variable, we
can find the pdf fX(x) by

Step 1 If FX is differentiable at x, we set

d

dx
FX(x) = fX(x).

Step 2 From 10.20, at countably many points, we can set the values
of fX to be any value. We use this to deal with the boundary
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point(s) including the point(s) where FX is not differentiable.
Usually, the values are selected to give simple expression. (In
many cases, they are simply set to 0.)

Example 10.26. Suppose that the lifetime X of a device has the
cdf

FX (x) =


0, x < 0,
1
4x

2, 0 ≤ x ≤ 2,
1, x > 2.

Because Fx(x) is defined piecewise and the expression defining
each piece is “nice”, we can find the derivative for each piece and
get

fX (x) =


0, x < 0,
x
2 , 0 < x < 2,
0, x > 2.

This leaves two points44 to be considered: x = 0 and x = 2.
However, they are only two points and therefore, from 10.20, the
values of the pdf can be any real numbers. Here, we set the values
to be 0 at both points:

fX (x) =

{
1
2x, 0 < x < 2,
0, otherwise.

10.27. In many situations when you are asked to find the pdf
from a description of a random variable, it may be easier to find
cdf first and then differentiate it to get pdf.

Exercise 10.28. A point is “picked at random” in the inside of a
circular disk with radius r. Let the random variable X denote the
distance from the center of the disk to this point. Find fX(x).

44At each of these boundary points, the expressions on both of its sides are different and
hence, to really find its derivative, we need to consider whether the derivative from the left
exists and is the same as the derivative from the right. At x = 0, turn out that the slope on
both sides is 0. So the derivative exists. However, at x = 2, FX has no derivative: the slope
is 1 from the left but 0 from the right.
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10.29. fX is nonnegative and
∫∞
−∞ fX(x)dx = 1.

Example 10.30. Random variable X has pdf

fX(x) =

{
ce−2x, x > 0
0, otherwise

Find the constant c and sketch the pdf.

Example 10.31. The pdf of a random variable X is shown in
Figure 30. What should be the value of h?

1

௑݂ ݔ

ݔ

݄

5

Figure 30: Triangular pdf for Example
10.31.

Definition 10.32. A continuous random variable is called expo-
nential if its pdf is given by

fX (x) =

{
λe−λx, x > 0,
0, x ≤ 0

for some λ > 0

Example 10.33. In Example 10.30, X is an exponential random
variable with λ = 2.

Theorem 10.34. Any nonnegative45 function that integrates to
one is a probability density function (pdf) of some random
variable [9, p.139].

45or nonnegative a.e.
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10.3 Expectation and Variance

10.35. Expectation : Suppose X is a continuous random variable
with probability density function fX(x).

EX =

∫ ∞
−∞

xfX(x)dx (23)

E [g(X)] =

∫ ∞
−∞

g(x)fX(x)dx (24)

In particular,

E
[
X2
]

=

∫ ∞
−∞

x2fX(x)dx

VarX =

∫ ∞
−∞

(x− EX)2fX(x)dx = E
[
X2
]
− (EX)2.

Example 10.36. For the random variable generated by the rand

command in MATLAB or the rand() command in Excel,

Example 10.37. For the exponential random variable introduced
in Definition 10.32,
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10.38. If we compare other characteristics of discrete and continu-
ous random variables, we find that with discrete random variables,
many facts are expressed as sums. With continuous random vari-
ables, the corresponding facts are expressed as integrals.

10.39. All of the properties for the expectation and variance of
discrete random variables also work for continuous random vari-
ables as well:

(a) Intuition/interpretation of the expected value: As n → ∞,
the average of n independent samples of X will approach EX.
This observation is known as the “Law of Large Numbers”.

(b) For c ∈ R, E [c] = c

(c) For constants a, b, we have E [aX + b] = aEX + b.

(d) E [
∑n

i=1 cigi(X] =
∑n

i=1 ciE [gi(X)].

(e) VarX = E
[
X2
]
− (EX)2

(f) VarX ≥ 0.

(g) VarX ≤ E
[
X2
]
.

(h) Var[aX + b] = a2 VarX.

(i) σaX+b = |a|σX .

10.40. Chebyshev’s Inequality :

P [|X − EX| ≥ α] ≤ σ2
X

α2

or equivalently

P [|X − EX| ≥ nσX ] ≤ 1

n2

• This inequality use variance to bound the “tail probability”
of a random variable.

• Useful only when α > σX
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Example 10.41. A circuit is designed to handle a current of 20
mA plus or minus a deviation of less than 5 mA. If the applied
current has mean 20 mA and variance 4 (mA)2, use the Cheby-
shev inequality to bound the probability that the applied current
violates the design parameters.

Let X denote the applied current. Then X is within the design
parameters if and only if |X − 20| < 5. To bound the probability
that this does not happen, write

P [|X − 20| ≥ 5] ≤ VarX

52
=

4

25
= 0.16.

Hence, the probability of violating the design parameters is at most
16%.

10.42. Interesting applications of expectation:

(a) fX (x) = E [δ (X − x)]

(b) P [X ∈ B] = E [1B(X)]

Example 10.43. Consider two distributions for a random variable
X. In part (a), which corresponds to the second column in the
table below, X is a discrete random variable with its pmf specified
in the first row. In part (b), which corresponds to the third column,
X is a continuous random variable with its pdf specified in the first
row.
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Distribution pX (x) =

{
cx2, x ∈ {1, 2} ,
0, otherwise.

fX (x) =

{
cx2, x ∈ (1, 2) ,
0, otherwise.

(i) Find c

(ii)
Find EX

(iii)
Find E

[
X2
]

(iv)
Find VarX

(v)
Find σX
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10.4 Families of Continuous Random Variables

Theorem 10.34 states that any nonnegative function f(x) whose
integral over the interval (−∞,+∞) equals 1 can be regarded as
a probability density function of a random variable. In real-world
applications, however, special mathematical forms naturally show
up. In this section, we introduce a couple families of continuous
random variables that frequently appear in practical applications.
The probability densities of the members of each family all have the
same mathematical form but differ only in one or more parameters.

10.4.1 (Continuous) Uniform Distribution

Definition 10.44.

• The (continuous) uniform distribution on an interval [a, b], is
denoted by uniform([a, b]) or U([a, b]) or simply U(a, b).

• Expressions that are synonymous with “X is a uniform ran-
dom variable” are

(a) “X is uniformly distributed”,

(b) “X has a uniform distribution”,

(c) and “X has a uniform density”.

To specify the support (range) of X, we may also append
“on/over the interval (a, b)”.
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• This family is characterized by pdf of the form

fX (x) =

{
0, x < a, x > b

1
b−a , a ≤ x ≤ b

• The constants a and b are referred to as the parameters of the
uniform distribution.

10.45. Important Interpretation: A continuous uniform random
variable X on the interval [a, b] is just as likely to be “near” any
value in [a, b] as any other value.

10.46. In MATLAB,

(a) use X = a+(b-a)*rand or X = random(’Uniform’,a,b) to
generate X ∼ U(a, b) ,

(b) use pdf(’Uniform’,x,a,b) and cdf(’Uniform’,x,a,b) to
evaluate the pdf and cdf at x, respectively.

Exercise 10.47. Show that FX (x) =


0, x < a,
x−a
b−a , a ≤ x ≤ b,

1, x > b.
84 Probability theory, random variables and random processes�

x x
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1
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1

fx(x) Fx(x)
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Gaussian (or normal) random variable This is a continuous random variable that
is described by the following pdf:

fx(x) = 1√
2πσ 2

exp

{
− (x− μ)2

2σ 2

}
, (3.16)

where μ and σ 2 are two parameters whose meaning is described later. It is usually denoted
as N (μ, σ 2). Figure 3.6 shows sketches of the pdf and cdf of a Gaussian random variable.

The Gaussian random variable is the most important and frequently encountered ran-
dom variable in communications. This is because thermal noise, which is the major source
of noise in communication systems, has a Gaussian distribution. Gaussian noise and the
Gaussian pdf are discussed in more depth at the end of this chapter.

The problems explore other pdf models. Some of these arise when a random variable
is passed through a nonlinearity. How to determine the pdf of the random variable in this
case is discussed next.

Funct ions of a random variable A function of a random variable y = g(x) is itself a
random variable. From the definition, the cdf of y can be written as

Fy(y) = P(ω ∈ � : g(x(ω)) ≤ y). (3.17)

Figure 31: The pdf and cdf for the uniform random variable. [16, Fig. 3.5]
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Example 10.48 (F2011). Suppose X is uniformly distributed on
the interval (1, 2). (X ∼ U(1, 2).)

(a) Plot the pdf fX(x) of X.

(b) Plot the cdf FX(x) of X.

10.49. The uniform distribution provides a probability model for
selecting a point at random from the interval [a, b].

• Use with caution to model a quantity that is known to vary
randomly between a and b but about which little else is known.

Example 10.50. [9, Ex. 4.1 p. 140-141] In coherent radio com-
munications, the phase difference between the transmitter and the
receiver, denoted by Θ, is modeled as having a uniform density on
[−π, π].

(a) P [Θ ≤ 0] = 1
2

(b) P
[
Θ ≤ π

2

]
= 3

4

Exercise 10.51. Show that whenX ∼ U(a, b), EX = a+b
2 , VarX =

(b−a)
2

12 , and E
[
X2
]

= 1
3

(
b2 + ab+ a2

)
.
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10.4.2 Gaussian Distribution

10.52. This is the most widely used model for the distribution
of a random variable. When you have many independent random
variables, a fundamental result called the central limit theorem
(CLT) (informally) says that the sum (or the average) of them can
often be approximated by normal distribution.
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�Fig. 3.14 (a) A sample skeletal muscle (emg) signal, and (b) its histogram and pdf fits.

1 =
[∫ ∞

−∞
fx(x)dx

]2

=
[∫ ∞

−∞
K1e−ax2

dx

]2

= K2
1

∫ ∞

x=−∞
e−ax2

dx
∫ ∞

y=−∞
e−ay2

dy

= K2
1

∫ ∞

x=−∞

∫ ∞

y=−∞
e−a(x2+y2)dxdy. (3.103)

Figure 32: Electrical activity
of a skeletal muscle: (a) A
sample skeletal muscle (emg)
signal, and (b) its histogram
and pdf fits. [16, Fig. 3.14]

Definition 10.53. Gaussian random variables:

• Often called normal random variables because they occur so
frequently in practice.
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• The Gaussian distribution is denoted by N
(
m,σ2

)
. It has

two parameters: m ∈ R and σ > 0.

◦ Caution: The second argument in N
(
m,σ2

)
is σ2 (not

σ).

◦ Several references use µ instead of m.

• This family is characterized by pdf of the form

fX (x) =
1√
2πσ

e−
1
2(

x−m
σ )

2

.
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Gaussian (or normal) random variable This is a continuous random variable that
is described by the following pdf:

fx(x) = 1√
2πσ 2

exp

{
− (x− μ)2

2σ 2

}
, (3.16)

where μ and σ 2 are two parameters whose meaning is described later. It is usually denoted
as N (μ, σ 2). Figure 3.6 shows sketches of the pdf and cdf of a Gaussian random variable.

The Gaussian random variable is the most important and frequently encountered ran-
dom variable in communications. This is because thermal noise, which is the major source
of noise in communication systems, has a Gaussian distribution. Gaussian noise and the
Gaussian pdf are discussed in more depth at the end of this chapter.

The problems explore other pdf models. Some of these arise when a random variable
is passed through a nonlinearity. How to determine the pdf of the random variable in this
case is discussed next.

Funct ions of a random variable A function of a random variable y = g(x) is itself a
random variable. From the definition, the cdf of y can be written as

Fy(y) = P(ω ∈ � : g(x(ω)) ≤ y). (3.17)

Figure 33: The pdf and cdf of N (µ, σ2). [16, Fig. 3.6]

◦ In Excel, use NORMDIST(x,m,σ,FALSE).
In MATLAB, use normpdf(x,m,σ) or pdf(’Normal’,x,m,σ).

◦ Figure 33 and Figure 35 display the famous bell-shaped
graphs of the Gaussian pdf. This curves are also called
the normal curves.

• In MATLAB, use X = random(’Normal’,m,σ) or X = σ*randn
+ m to generate X ∼ N (m,σ2).

• FX(x) has no closed-form expression. However, see 10.60.

◦ In MATLAB, use normcdf(x,m,σ) or cdf(’Normal’,x,m,σ).

◦ In Excel, use NORMDIST(x,m,σ,TRUE).

10.54. EX = m and VarX = σ2.
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�Fig. 3.15 Plots of the zero-mean Gaussian pdf for different values of standard deviation, σx.

Table 3.1 Influence of σx on different quantities

Range (±kσx) k = 1 k = 2 k = 3 k = 4

P(mx − kσx < x ≤ mx + kσx) 0.683 0.955 0.997 0.999
Error probability 10−3 10−4 10−6 10−8

Distance from the mean 3.09 3.72 4.75 5.61

of the pdf are ignorable. Indeed when communication systems are considered later it is the

presence of these tails that results in bit errors. The probabilities are on the order of 10−3–

10−12, very small, but still significant in terms of system performance. It is of interest to

see how far, in terms of σx, one must be from the mean value to have the different levels of

error probabilities. As shall be seen in later chapters this translates to the required SNR to

achieve a specified bit error probability. This is also shown in Table 3.1.

Having considered the single (or univariate) Gaussian random variable, we turn our

attention to the case of two jointly Gaussian random variables (or the bivariate case). Again

they are described by their joint pdf which, in general, is an exponential whose exponent

is a quadratic in the two variables, i.e., fx,y(x, y) = Ke(ax2+bx+cxy+dy+ey2+f ), where the con-

stants K, a, b, c, d, e, and f are chosen to satisfy the basic properties of a valid joint pdf,

namely being always nonnegative (≥ 0), having unit volume, and also that the marginal

pdfs, fx(x) = ∫∞−∞ fx,y(x, y)dy and fy(y) = ∫∞−∞ fx,y(x, y)dx, are valid. Written in standard

form the joint pdf is

Figure 34: Plots of the zero-
mean Gaussian pdf for differ-
ent values of standard devia-
tion, σX . [16, Fig. 3.15]

10.55. Important probabilities:
P [|X − µ| < σ] = 0.6827;
P [|X − µ| > σ] = 0.3173;
P [|X − µ| > 2σ] = 0.0455;
P [|X − µ| < 2σ] = 0.9545

These values are illustrated in Figure 35. We will see these
numbers again in Example 10.61.
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Figure 35: Probability
density function of
X ∼ N (µ, σ2) . The pur-
ple areas correspond to
P [|X − µ| < σ] = 0.6827 and
P [|X − µ| < 2σ] = 0.9545,
respectively.

Example 10.56. Figure 36 compares several deviation scores and
the normal distribution.

(a) Standard scores have a mean of zero and a standard deviation
of 1.0.

(b) Scholastic Aptitude Test scores have a mean of 500 and a
standard deviation of 100.
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6.1 Normal Probability Distributions
The domain of bell-shaped distributions is the set
of all real numbers.

6.2 The Standard Normal Distribution
To work with normal distributions, we need the
standard score.

6.3 Applications of Normal Distributions
The normal distribution can help us to determine
probabilities.

6.4 Notation
The z notation is critical in the use of normal
distributions.

6.5 Normal Approximation of the
Binomial
Binomial probabilities can be estimated by using
a normal distribution.

6 Normal Probability Distributions

6.1 Normal Probability Distributions 

Intelligence Scores
The normal probability distribution is considered the single most important proba-
bility distribution. An unlimited number of continuous random variables have either a normal

or an approximately normal distribution.

We are all familiar with IQ (intelligence quotient) scores and/or SAT (Scholastic Aptitude Test)
scores. IQ scores have a mean of 100 and a standard deviation of 16. SAT scores have a mean of

500 with a standard deviation of 100. But did you know that these continuous random variables

also follow a normal distribution?

Figure A, pictures the comparison of sev-

eral deviation scores and the normal distri-

bution: Standard scores have a mean of

zero and a standard deviation of 1.0.

Scholastic Aptitude Test scores have a

mean of 500 and a standard deviation of

100.

Binet Intelligence Scale scores have a

mean of 100 and a standard deviation of 16.

In each case there are 34 percent of the

scores between the mean and one standard

deviation, 14 percent between one and two

standard deviations, and 2 percent beyond

two standard deviations.

Source: Beck, Applying Psychology: Critical and Creative Thinking, Figure 6.2 “Pictures the Comparison of Several Deviation
Scores and the Normal Distribution,” © 1992 Prentice-Hall, Inc. Reproduced by permission of Pearson Education, Inc.
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Figure 36: Comparison of Several Devi-
ation Scores and the Normal Distribu-
tion

(c) Binet Intelligence Scale46 scores have a mean of 100 and a
standard deviation of 16.

In each case there are 34 percent of the scores between the mean
and one standard deviation, 14 percent between one and two stan-
dard deviations, and 2 percent beyond two standard deviations.
[Source: Beck, Applying Psychology: Critical and Creative Think-
ing.]

10.57. The area under a normal probability density function be-
yond 3σ from the mean is quite small. In fact,

P [|X − µ| < 3σ] ≈ 0.9973.

Therefore, approximately 99.73% of the probability of a normal
distribution is within the interval (µ− 3σ, µ+ 3σ).

46Alfred Binet, who devised the first general aptitude test at the beginning of the 20th
century, defined intelligence as the ability to make adaptations. The general purpose of the
test was to determine which children in Paris could benefit from school. Binets test, like its
subsequent revisions, consists of a series of progressively more difficult tasks that children of
different ages can successfully complete. A child who can solve problems typically solved by
children at a particular age level is said to have that mental age. For example, if a child can
successfully do the same tasks that an average 8-year-old can do, he or she is said to have a
mental age of 8. The intelligence quotient, or IQ, is defined by the formula:

IQ = 100 × (Mental Age/Chronological Age)

There has been a great deal of controversy in recent years over what intelligence tests measure.
Many of the test items depend on either language or other specific cultural experiences for
correct answers. Nevertheless, such tests can rather effectively predict school success. If
school requires language and the tests measure language ability at a particular point of time
in a childs life, then the test is a better-than-chance predictor of school performance.
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Definition 10.58. N (0, 1) is the standard Gaussian (normal)
distribution.

• We usually use Z to denote standard Gaussian RV.

• In Excel, use NORMSINV(RAND()).
In MATLAB, use randn.

• The standard normal cdf is denoted by Φ(z).

◦ It inherits all properties of cdf.

◦ Moreover, note that Φ(−z) = 1− Φ(z).

10.59. Relationship47 between N (0, 1) and N (m,σ2).

(a) An arbitrary Gaussian random variable with mean m and
variance σ2 can be represented as σZ+m, where Z ∼ N (0, 1).

This relationship can be used to generate general Gaussian
RV from standard Gaussian RV.

(b) If X ∼ N
(
m,σ2

)
, the random variable

Z =
X −m
σ

is a standard normal random variable. That is, Z ∼ N (0, 1).

• Creating a new random variable by this transformation
is referred to as standardizing.

• The standardized variable is called “standard score” or
“z-score”.

10.60. It is impossible to express the integral of a Gaussian PDF
between non-infinite limits (e.g., (22)) as a function that appears
on most scientific calculators.

47To be proved in 10.81.
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• An old but still popular technique to find integrals of the
Gaussian PDF is to refer to tables that have been obtained
by numerical integration.

◦ An example of such table is Table 4, which lists Φ(z) for
many values of positive z.

◦ For X ∼ N
(
m,σ2

)
, we can show that the CDF of X can

be calculated from

FX(x) = Φ

(
x−m
σ

)
.

Example 10.61. Suppose Z ∼ N (0, 1). Evaluate the following
probabilities.

(a) P [−1 ≤ Z ≤ 1]

(b) P [−2 ≤ Z ≤ 2]

Example 10.62. Suppose X ∼ N (1, 2). Find P [1 ≤ X ≤ 2].

Example 10.63. Signal Detection: Assume that in the detection
of a digital signal, the background noise follows a normal distri-
bution with a mean of 0 volt and standard deviation of 0.45 volt.
The system assumes a digital 1 has been transmitted when the
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z (z) z (z) z (z) z (z) z (z) z (z)

0.00 0.5000 0.50 0.6915 1.00 0.8413 1.50 0.9332 2.00 0.97725 2.50 0.99379

0.01 0.5040 0.51 0.6950 1.01 0.8438 1.51 0.9345 2.01 0.97778 2.51 0.99396

0.02 0.5080 0.52 0.6985 1.02 0.8461 1.52 0.9357 2.02 0.97831 2.52 0.99413

0.03 0.5120 0.53 0.7019 1.03 0.8485 1.53 0.9370 2.03 0.97882 2.53 0.99430

0.04 0.5160 0.54 0.7054 1.04 0.8508 1.54 0.9382 2.04 0.97932 2.54 0.99446

0.05 0.5199 0.55 0.7088 1.05 0.8531 1.55 0.9394 2.05 0.97982 2.55 0.99461

0.06 0.5239 0.56 0.7123 1.06 0.8554 1.56 0.9406 2.06 0.98030 2.56 0.99477

0.07 0.5279 0.57 0.7157 1.07 0.8577 1.57 0.9418 2.07 0.98077 2.57 0.99492

0.08 0.5319 0.58 0.7190 1.08 0.8599 1.58 0.9429 2.08 0.98124 2.58 0.99506

0.09 0.5359 0.59 0.7224 1.09 0.8621 1.59 0.9441 2.09 0.98169 2.59 0.99520

0.10 0.5398 0.60 0.7257 1.10 0.8643 1.60 0.9452 2.10 0.98214 2.60 0.99534

0.11 0.5438 0.61 0.7291 1.11 0.8665 1.61 0.9463 2.11 0.98257 2.61 0.99547

0.12 0.5478 0.62 0.7324 1.12 0.8686 1.62 0.9474 2.12 0.98300 2.62 0.99560

0.13 0.5517 0.63 0.7357 1.13 0.8708 1.63 0.9484 2.13 0.98341 2.63 0.99573

0.14 0.5557 0.64 0.7389 1.14 0.8729 1.64 0.9495 2.14 0.98382 2.64 0.99585

0.15 0.5596 0.65 0.7422 1.15 0.8749 1.65 0.9505 2.15 0.98422 2.65 0.99598

0.16 0.5636 0.66 0.7454 1.16 0.8770 1.66 0.9515 2.16 0.98461 2.66 0.99609

0.17 0.5675 0.67 0.7486 1.17 0.8790 1.67 0.9525 2.17 0.98500 2.67 0.99621

0.18 0.5714 0.68 0.7517 1.18 0.8810 1.68 0.9535 2.18 0.98537 2.68 0.99632

0.19 0.5753 0.69 0.7549 1.19 0.8830 1.69 0.9545 2.19 0.98574 2.69 0.99643

0.20 0.5793 0.70 0.7580 1.20 0.8849 1.70 0.9554 2.20 0.98610 2.70 0.99653

0.21 0.5832 0.71 0.7611 1.21 0.8869 1.71 0.9564 2.21 0.98645 2.71 0.99664

0.22 0.5871 0.72 0.7642 1.22 0.8888 1.72 0.9573 2.22 0.98679 2.72 0.99674

0.23 0.5910 0.73 0.7673 1.23 0.8907 1.73 0.9582 2.23 0.98713 2.73 0.99683

0.24 0.5948 0.74 0.7704 1.24 0.8925 1.74 0.9591 2.24 0.98745 2.74 0.99693

0.25 0.5987 0.75 0.7734 1.25 0.8944 1.75 0.9599 2.25 0.98778 2.75 0.99702

0.26 0.6026 0.76 0.7764 1.26 0.8962 1.76 0.9608 2.26 0.98809 2.76 0.99711

0.27 0.6064 0.77 0.7794 1.27 0.8980 1.77 0.9616 2.27 0.98840 2.77 0.99720

0.28 0.6103 0.78 0.7823 1.28 0.8997 1.78 0.9625 2.28 0.98870 2.78 0.99728

0.29 0.6141 0.79 0.7852 1.29 0.9015 1.79 0.9633 2.29 0.98899 2.79 0.99736

0.30 0.6179 0.80 0.7881 1.30 0.9032 1.80 0.9641 2.30 0.98928 2.80 0.99744

0.31 0.6217 0.81 0.7910 1.31 0.9049 1.81 0.9649 2.31 0.98956 2.81 0.99752

0.32 0.6255 0.82 0.7939 1.32 0.9066 1.82 0.9656 2.32 0.98983 2.82 0.99760

0.33 0.6293 0.83 0.7967 1.33 0.9082 1.83 0.9664 2.33 0.99010 2.83 0.99767

0.34 0.6331 0.84 0.7995 1.34 0.9099 1.84 0.9671 2.34 0.99036 2.84 0.99774

0.35 0.6368 0.85 0.8023 1.35 0.9115 1.85 0.9678 2.35 0.99061 2.85 0.99781

0.36 0.6406 0.86 0.8051 1.36 0.9131 1.86 0.9686 2.36 0.99086 2.86 0.99788

0.37 0.6443 0.87 0.8078 1.37 0.9147 1.87 0.9693 2.37 0.99111 2.87 0.99795

0.38 0.6480 0.88 0.8106 1.38 0.9162 1.88 0.9699 2.38 0.99134 2.88 0.99801

0.39 0.6517 0.89 0.8133 1.39 0.9177 1.89 0.9706 2.39 0.99158 2.89 0.99807

0.40 0.6554 0.90 0.8159 1.40 0.9192 1.90 0.9713 2.40 0.99180 2.90 0.99813

0.41 0.6591 0.91 0.8186 1.41 0.9207 1.91 0.9719 2.41 0.99202 2.91 0.99819

0.42 0.6628 0.92 0.8212 1.42 0.9222 1.92 0.9726 2.42 0.99224 2.92 0.99825

0.43 0.6664 0.93 0.8238 1.43 0.9236 1.93 0.9732 2.43 0.99245 2.93 0.99831

0.44 0.6700 0.94 0.8264 1.44 0.9251 1.94 0.9738 2.44 0.99266 2.94 0.99836

0.45 0.6736 0.95 0.8289 1.45 0.9265 1.95 0.9744 2.45 0.99286 2.95 0.99841

0.46 0.6772 0.96 0.8315 1.46 0.9279 1.96 0.9750 2.46 0.99305 2.96 0.99846

0.47 0.6808 0.97 0.8340 1.47 0.9292 1.97 0.9756 2.47 0.99324 2.97 0.99851

0.48 0.6844 0.98 0.8365 1.48 0.9306 1.98 0.9761 2.48 0.99343 2.98 0.99856

0.49 0.6879 0.99 0.8389 1.49 0.9319 1.99 0.9767 2.49 0.99361 2.99 0.99861

Table 4: The standard normal CDF: Φ(z)
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voltage exceeds 0.9. (Otherwise, it assumes a digital 0 has been
transmitted)

What is the probability of detecting a digital 1 when none was
sent? [Montgomery and Runger, 2013, Ex. 4-15]

10.64. Q-function : Q (z) =
∞∫
z

1√
2π
e−

x2

2 dx corresponds to P [Z > z]

where Z ∼ N (0, 1); that is Q (z) is the probability of the “tail” of
N (0, 1). The Q function is then a complementary cdf (ccdf).
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Figure 37: Q-function

(a) Q is a decreasing function with Q (0) = 1
2 .

(b) Q (−z) = 1−Q (z) = Φ(z)

(c) Table 5 lists the values of Q(z) for z between 3 to 5.

• For z between 0 to 3, we use Q(z) = 1− Φ(z).

• For z ≥ 5, the value of Q(z) is extremely small. We may
assume Q(z) ≈ 0.

10.65. Error function (MATLAB): erf (z) = 2√
π

z∫
0

e−x
2

dx =

1− 2Q
(√

2z
)

(a) It is an odd function of z.

(b) For z ≥ 0, it corresponds to P [|X| < z] where X ∼ N
(
0, 1

2

)
.

(c) lim
z→∞

erf (z) = 1
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z Q(z) z Q(z) z Q(z) z Q(z) z Q(z)

3.00 1.35E‐03 3.40 3.37E‐04 3.80 7.23E‐05 4.20 1.33E‐05 4.60 2.11E‐06

3.01 1.31E‐03 3.41 3.25E‐04 3.81 6.95E‐05 4.21 1.28E‐05 4.61 2.01E‐06

3.02 1.26E‐03 3.42 3.13E‐04 3.82 6.67E‐05 4.22 1.22E‐05 4.62 1.92E‐06

3.03 1.22E‐03 3.43 3.02E‐04 3.83 6.41E‐05 4.23 1.17E‐05 4.63 1.83E‐06

3.04 1.18E‐03 3.44 2.91E‐04 3.84 6.15E‐05 4.24 1.12E‐05 4.64 1.74E‐06

3.05 1.14E‐03 3.45 2.80E‐04 3.85 5.91E‐05 4.25 1.07E‐05 4.65 1.66E‐06

3.06 1.11E‐03 3.46 2.70E‐04 3.86 5.67E‐05 4.26 1.02E‐05 4.66 1.58E‐06

3.07 1.07E‐03 3.47 2.60E‐04 3.87 5.44E‐05 4.27 9.77E‐06 4.67 1.51E‐06

3.08 1.04E‐03 3.48 2.51E‐04 3.88 5.22E‐05 4.28 9.34E‐06 4.68 1.43E‐06

3.09 1.00E‐03 3.49 2.42E‐04 3.89 5.01E‐05 4.29 8.93E‐06 4.69 1.37E‐06

3.10 9.68E‐04 3.50 2.33E‐04 3.90 4.81E‐05 4.30 8.54E‐06 4.70 1.30E‐06

3.11 9.35E‐04 3.51 2.24E‐04 3.91 4.61E‐05 4.31 8.16E‐06 4.71 1.24E‐06

3.12 9.04E‐04 3.52 2.16E‐04 3.92 4.43E‐05 4.32 7.80E‐06 4.72 1.18E‐06

3.13 8.74E‐04 3.53 2.08E‐04 3.93 4.25E‐05 4.33 7.46E‐06 4.73 1.12E‐06

3.14 8.45E‐04 3.54 2.00E‐04 3.94 4.07E‐05 4.34 7.12E‐06 4.74 1.07E‐06

3.15 8.16E‐04 3.55 1.93E‐04 3.95 3.91E‐05 4.35 6.81E‐06 4.75 1.02E‐06

3.16 7.89E‐04 3.56 1.85E‐04 3.96 3.75E‐05 4.36 6.50E‐06 4.76 9.68E‐07

3.17 7.62E‐04 3.57 1.78E‐04 3.97 3.59E‐05 4.37 6.21E‐06 4.77 9.21E‐07

3.18 7.36E‐04 3.58 1.72E‐04 3.98 3.45E‐05 4.38 5.93E‐06 4.78 8.76E‐07

3.19 7.11E‐04 3.59 1.65E‐04 3.99 3.30E‐05 4.39 5.67E‐06 4.79 8.34E‐07

3.20 6.87E‐04 3.60 1.59E‐04 4.00 3.17E‐05 4.40 5.41E‐06 4.80 7.93E‐07

3.21 6.64E‐04 3.61 1.53E‐04 4.01 3.04E‐05 4.41 5.17E‐06 4.81 7.55E‐07

3.22 6.41E‐04 3.62 1.47E‐04 4.02 2.91E‐05 4.42 4.94E‐06 4.82 7.18E‐07

3.23 6.19E‐04 3.63 1.42E‐04 4.03 2.79E‐05 4.43 4.71E‐06 4.83 6.83E‐07

3.24 5.98E‐04 3.64 1.36E‐04 4.04 2.67E‐05 4.44 4.50E‐06 4.84 6.49E‐07

3.25 5.77E‐04 3.65 1.31E‐04 4.05 2.56E‐05 4.45 4.29E‐06 4.85 6.17E‐07

3.26 5.57E‐04 3.66 1.26E‐04 4.06 2.45E‐05 4.46 4.10E‐06 4.86 5.87E‐07

3.27 5.38E‐04 3.67 1.21E‐04 4.07 2.35E‐05 4.47 3.91E‐06 4.87 5.58E‐07

3.28 5.19E‐04 3.68 1.17E‐04 4.08 2.25E‐05 4.48 3.73E‐06 4.88 5.30E‐07

3.29 5.01E‐04 3.69 1.12E‐04 4.09 2.16E‐05 4.49 3.56E‐06 4.89 5.04E‐07

3.30 4.83E‐04 3.70 1.08E‐04 4.10 2.07E‐05 4.50 3.40E‐06 4.90 4.79E‐07

3.31 4.66E‐04 3.71 1.04E‐04 4.11 1.98E‐05 4.51 3.24E‐06 4.91 4.55E‐07

3.32 4.50E‐04 3.72 9.96E‐05 4.12 1.89E‐05 4.52 3.09E‐06 4.92 4.33E‐07

3.33 4.34E‐04 3.73 9.57E‐05 4.13 1.81E‐05 4.53 2.95E‐06 4.93 4.11E‐07

3.34 4.19E‐04 3.74 9.20E‐05 4.14 1.74E‐05 4.54 2.81E‐06 4.94 3.91E‐07

3.35 4.04E‐04 3.75 8.84E‐05 4.15 1.66E‐05 4.55 2.68E‐06 4.95 3.71E‐07

3.36 3.90E‐04 3.76 8.50E‐05 4.16 1.59E‐05 4.56 2.56E‐06 4.96 3.52E‐07

3.37 3.76E‐04 3.77 8.16E‐05 4.17 1.52E‐05 4.57 2.44E‐06 4.97 3.35E‐07

3.38 3.62E‐04 3.78 7.84E‐05 4.18 1.46E‐05 4.58 2.32E‐06 4.98 3.18E‐07

3.39 3.49E‐04 3.79 7.53E‐05 4.19 1.39E‐05 4.59 2.22E‐06 4.99 3.02E‐07

Table 5: The standard normal complementary CDF: Q(z)
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(d) erf (−z) = −erf (z)

(e) Φ(x) = 1
2

(
1 + erf

(
x√
(2)

))
= 1

2erfc
(
− x√

2

)
(f) The complementary error function:

erfc (z) = 1− erf (z) = 2Q
(√

2z
)

= 2√
π

∫∞
z e−x

2

dx

f) ( )( ) ( ) ( )( ) ( )
( )( )

( ) ( )
2

21
2

f x x
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dQ f x g x dx Q f x g x dx e f x g t dt dx
dxπ
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27) Moment and central moment 
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29) Error function (Matlab): ( ) (2
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Figure 38: erf-function and Q-function

10.4.3 Exponential Distribution

Definition 10.66. The exponential distribution is denoted by
E (λ).

(a) λ > 0 is a parameter of the distribution, often called the rate
parameter.

(b) Characterized by

• fX (x) =

{
λe−λx, x > 0,
0, x ≤ 0

• FX (x) =

{
1− e−λx, x > 0,
0, x ≤ 0
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(c) MATLAB:

• X = exprnd(1/λ) or random(’exp’,1/λ)

• fX(x) = exppdf(x,1/λ) or pdf(’exp’,x,1/λ)

• FX(x) = expcdf(x,1/λ) or cdf(’exp’,x,1/λ)

10.67. The exponential distribution is intimately related to the
Poisson process. In fact, the random variable X that equals the
“distance” (or length or duration) between (any) successive events
of a Poisson process with parameter λ is an exponential random
variable with the same parameter.

Example 10.68. Exponential distribution is often used as a prob-
ability model for the (waiting) time until the next “rare” event
occurs.

• time elapsed until the next earthquake in a certain region

• decay time of a radioactive particle

• time between independent events such as arrivals at a service
facility or arrivals of customers in a shop.

• duration of a cell-phone call

• time it takes a computer network to transmit a message from
one node to another.

10.69. In Example 10.37, we showed that EX = 1
λ .

Example 10.70. Suppose X ∼ E(λ), find P [1 < X < 2].

10.71. Survival-, survivor-, or reliability-function:
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Exercise 10.72. Exponential random variable as a continuous
version of geometric random variable: Suppose X ∼ E (λ). Show
that bXc ∼ G0(e

−λ) and dXe ∼ G1(e
−λ)

Example 10.73. Phone Company A charges $0.15 per minute
for telephone calls. For any fraction of a minute at the end of
a call, they charge for a full minute. Phone Company B also
charges $0.15 per minute. However, Phone Company B calculates
its charge based on the exact duration of a call. If T , the duration
of a call in minutes, is exponential with parameter λ = 1/3, what
are the expected revenues per call E [RA] and E [RB] for companies
A and B?

Solution : First, note that ET = 1
λ = 3. Hence,

E [RB] = E [0.15× T ] = 0.15ET = $0.45.

and
E [RA] = E [0.15× dT e] = 0.15E dT e .

Now, recall, from Exercise 10.72, that dT e ∼ G1

(
e−λ
)
. Hence,

E dT e = 1
1−e−λ ≈ 3.53. Therefore,

E [RA] = 0.15E dT e ≈ 0.5292.

10.74. Memoryless property : The exponential r.v. is the only
continuous48 r.v. on [0,∞) that satisfies the memoryless property:

P [X > s+ x |X > s ] = P [X > x]

for all x > 0 and all s > 0 [18, p. 157–159]. In words, the future
is independent of the past. The fact that it hasn’t happened yet,
tells us nothing about how much longer it will take before it does
happen.

• Imagining that the exponentially distributed random variable
X represents the lifetime of an item, the residual life of an item
has the same exponential distribution as the original lifetime,
regardless of how long the item has been already in use. In
other words, there is no deterioration/degradation over time.
If it is still currently working after 20 years of use, then today,
its condition is “just like new”.

48For discrete random variable, geometric random variables satisfy the memoryless property.
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• In particular, suppose we define the setB+x to be {x+ b : b ∈ B}.
For any x > 0 and set B ⊂ [0,∞), we have

P [X ∈ B + x|X > x] = P [X ∈ B]

because

P [X ∈ B + x]

P [X > x]
=

∫
B+x λe

−λtdt

e−λx
τ=t−x

=

∫
B λe

−λ(τ+x)dτ

e−λx
.

Example 10.75. The exponential distribution is often used in
reliability studies as the model for the time until failure of a de-
vice. For example, the lifetime of a semiconductor chip might be
modeled as an exponential random variable with a mean of 40,000
hours.

The lack of memory property of the exponential distribution
implies that the device does not wear out. That is, regardless of
how long the device has been operating, the probability of a failure
in the next 1000 hours is the same as the probability of a failure
in the first 1000 hours of operation.

10.76. The lifetime L of a device with failures caused by random
shocks might be appropriately modeled as an exponential random
variable. However, the lifetime L of a device that suffers slow
mechanical wear, such as bearing wear, is better modeled by other
distributions such as the Weibull distribution.

10.77. Summary:

X ∼ Support SX fX (x) =

Uniform U(a, b) (a, b)

{
1
b−a , a < x < b,

0, otherwise.

Normal (Gaussian) N (m,σ2) R 1√
2πσ

e−
1
2(x−mσ )

2

Exponential E(λ) (0,∞)

{
λe−λx, x > 0,
0, x ≤ 0

Table 6: Examples of probability density functions. Here, λ, σ > 0.
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